

www.ecrypt.eu.org

### Cryptographic Hash Functions: Theory and Practice

#### Bart Preneel Katholieke Universiteit Leuven - COSIC firstname.lastname@esat.kuleuven.be



#### Hash functions





### Applications

- short unique identifier to a string
  - digital signatures
  - data authentication
- one-way function of a string
  - protection of passwords
  - micro-payments
- confirmation of knowledge/commitment
- pseudo-random string generation/key derivation
- entropy extraction
- construction of MAC algorithms, stream ciphers, block ciphers,...



2005: 800 uses of MD5 in Microsoft Windows



### **Definitions**

### **Iterations (modes)**

#### **Compression functions**

SHA-{0,1,2}

4

SHA-3 bits and bytes



# Hash function flavours cryptographic hash function this talk MAC **MDC OWHF** CRHF UOWHF (TCR)



#### Informal definitions

- no secret parameters
- input string x of arbitrary length ⇒ output h(x) of fixed bitlength n
- computation "easy"
- One Way Hash Function (OWHF)
  - preimage resistance
  - 2<sup>nd</sup> preimage resistance
- Collision Resistant Hash Function (CRHF): OWHF +
  - collision resistant



#### Security requirements (n-bit result)



### Preimage resistance

preimage

h

h(x)

 $2^n$ 

- in a password file, one does not store
  - (username, password)
- but
  - (username,hash(password))
- this is sufficient to verify a password
- an attacker with access to the password file has to find a preimage

### Second preimage resistance

#### 2<sup>nd</sup> preimage



Channel 1: high capacity and insecure
 h(x)
 Channel 2: low capacity but secure
 (= authenticated – cannot be modified)

- an attacker can modify x but not h(x)
- he can only fool the recipient if he finds a second preimage of x

# Collision resistance (1/2)

- hacker Alice prepares two versions of a software driver for the O/S company Bob
  - x is correct code
  - x' contains a backdoor that gives Alice access to the machine
- Alice submits x for inspection to Bob
- if Bob is satisfied, he digitally signs h (x) with his private key
- Alice now distributes x' to users of the O/S; these users verify the signature with Bob's public key
- this signature works for x and for x', since h(x) = h(x')!

#### collision



### Collision resistance (2/2)

- in many cryptographic protocols, Alice wants to commit to a value x without revealing it
- Alice picks a secret random string r and sends y = h(x || r) to Bob
- in a later phase of the protocol, Alice reveals x and r to Bob and he checks that y is correct
- if Alice can find a collision, that is (x,r) and (x',r') with x' ≠ x she can cheat
- if Bob can find a preimage, he can learn x and cheat

#### collision



### Brute force (2<sup>nd</sup>) preimage

- multiple target second preimage (1 out of many):
  - if one can attack 2<sup>t</sup> simultaneous targets, the effort to find a single preimage is 2<sup>n-t</sup>
- multiple target second preimage (many out of many):
  - time-memory trade-off with Θ(2<sup>n</sup>) precomputation and storage Θ(2<sup>2n/3</sup>) time per (2<sup>nd</sup>) preimage: Θ(2<sup>2n/3</sup>) [Hellman'80]
- answer: randomize hash function with a parameter S (salt, key, spice,...)



### The birthday paradox

- given a set with S elements
- choose r elements at random (with replacements) with r « S
- the probability p that there are at least 2 equal elements (a collision) ≈ 1 - exp (- r(r-1)/2S)
- more precisely, it can be shown that
  - p ≥ 1 exp (- r(r-1)/2S)
  - if r <  $\sqrt{2S}$  then p ≥ 0.6 r (r-1)/2S



### How to find collisions?



I = space of pairs of messages; size  $\approx (2^{2^{64}})^2$ 

C = space of all input messages that collide under h

 $|C| \approx 2^{-n} |I|$ 

#### Collision search algorithm 1

Pick  $2^n$  random message pairs (x,x')

For each pair,  $Prob(h(x)=h(x')=2^{-n})$ 

You expect to find a collision, that is, a non-empty intersection with C

### How to find collisions?



I = space of pairs of messages; size  $\approx (2^{2^{64}})^2$ 

C = space of all input messages that collide under h

 $|\mathsf{C}| \approx 2^{-n} |\mathsf{I}|$ 

#### **Collision search algorithm 2**

Pick a set R of 2<sup>n/2</sup> random messages

Find a collision

You expect to find a collision, that is, a non-empty intersection with C as there are about  $2^{n}/2$  distinct pairs in R

### **Collision resistance**

- hard to achieve in practice
  - many attacks
  - requires double output length 2<sup>n/2</sup> versus 2<sup>n</sup>
- hard to achieve in theory
  - [Simon'98] one cannot derive collision resistance from "general" preimage resistance (there exists no black box reduction)
- hard to formalize: requires
  - family of functions: key, parameter, salt, spice,...
  - "human ignorance" trick [Stinson'06], [Rogaway'06]



#### Relation between properties





#### Brute force attacks in practice

- (2<sup>nd</sup>) preimage search
  - n = 128: 23 B\$ for 1 year if one can attack 2<sup>40</sup> targets in parallel
- parallel collision search: small memory using cycle finding algorithms (distinguished points)
  - n = 128: 1 M\$ for 8 hours (or 1 year on 100K PCs)
  - n = 160: 90 M\$ for 1 year
  - need 256-bit result for long term security (30 years or more)



#### Quantum computers

- in principle exponential parallelism
- inverting a one-way function: 2<sup>n</sup> reduced to 2<sup>n/2</sup>
   [Grover'96]
- collision search:
  - 2<sup>n/3</sup> computation + hardware [Brassard-Hoyer-Tapp'98]
  - [Bernstein'09] classical collision search requires  $2^{n/4}$  computation and hardware (= standard cost of  $2^{n/2}$ )





#### **Properties in practice**

- collision resistance is not always necessary
- other properties are needed:
  - PRF: pseudo-randomness if keyed (with secret key)
  - PRO: pseudo-random oracle property
  - near-collision resistance
  - partial preimage resistance (most of input known)
  - multiplication freeness
- how to formalize these requirements and the relation between them?



# Iteration (mode of compression function)

### How not to construct a hash function

Divide the message into t blocks x<sub>i</sub> of n bits each



#### Hash function: iterated structure



Split messages into blocks of fixed length and hash them block by block with a compression function f

Efficient and elegant But ...



#### Security relation between f and h

- iterating f can degrade its security
  - trivial example: 2<sup>nd</sup> preimage



#### Security relation between f and h (2)

- solution: Merkle-Damgård (MD) strengthening
  - fix IV, use unambiguous padding and insert length at the end
- f is collision resistant ⇒ h is collision resistant [Merkle'89-Damgård'89]
- f is ideally 2<sup>nd</sup> preimage resistant preimage resistant [Lai-Massey'92]
  - few hash functions have a strong compression function
  - very few hash functions treat  $x_i$  and  $H_{i-1}$  in the same way



#### Security relation between f and h (3)

length extension: if one knows h(x), easy to compute h(x || y) without knowing x or IV



#### Property preservation [Andreeva-Mennink-P'10] for overview

Sec/Pre preservation seems to be problematic

Is Pre preservation meaningful?

|                             | Coll | Sec | Pre | Pro |
|-----------------------------|------|-----|-----|-----|
| Suffix- &<br>Prefix-free MD |      |     |     |     |
| Envelope MD                 |      |     |     |     |
| BCM                         |      |     |     | ?   |
| Haifa                       |      |     |     |     |
| RMX                         |      |     |     |     |
|                             |      |     |     |     |
|                             |      |     |     |     |
|                             |      |     |     | -   |

#### More on property preservation/domain extension

- PRO preservation ⇒ Col, Sec and Pre for ideal compression function
  - but for narrow pipe bounds for Sec and Pre are at most 2<sup>n/2</sup> rather than 2<sup>n</sup>

• [...]



#### Attacks on MD-type iterations

multi-collision attack and impact on concatenation [Joux'04]

#### long message 2<sup>nd</sup> preimage attack

[Dean-Felten-Hu'99], [Kelsey-Schneier'05]

- Sec security degrades lineary with number 2<sup>t</sup> of message blocks hashed: 2<sup>n-t+1</sup> + t 2<sup>n/2+1</sup>
- appending the length does not help here!
- herding attack [Kelsey-Kohno'06]
  - reduces security of commitment using a hash function from 2<sup>n</sup>
  - on-line  $2^{n-t}$  + precomputation  $2 \cdot 2^{(n+t)/2}$  + storage  $2^t$



#### How (NOT) to strengthen a hash function? [Joux'04]

- answer: concatenation
- h<sub>1</sub> (n1-bit result) and h<sub>2</sub> (n2-bit result)

- intuition: the strength of g against collision/(2<sup>nd</sup>) preimage attacks is the product of the strength of h<sub>1</sub> and h<sub>2</sub>

 $\begin{array}{c|c}
h_{1} & h_{2} \\
\downarrow & \downarrow \\
g(x) = h_{1}(x) || h_{2}(x)
\end{array}$ 

• but....

#### Multiple collisions ≠ multi-collision

Assume "ideal" hash function h with n-bit result

- Θ(2<sup>n/2</sup>) evaluations of h (or steps): 1 collision
   h(x)=h(x')
- Θ(r. 2<sup>n/2</sup>) steps: r<sup>2</sup> collisions

   h(x<sub>1</sub>)=h(x<sub>1</sub>'); h(x<sub>2</sub>)=h(x<sub>2</sub>'); ...; h(x<sub>r<sup>2</sup></sub>)=h(x<sub>r<sup>2</sup></sub>')
- Θ(2<sup>2n/3</sup>) steps: a 3-collision
   h(x)= h(x')=h(x")
- Θ(2<sup>n(t-1)/t</sup>) steps: a t-fold collision (multi-collision)
   h(x<sub>1</sub>)= h(x<sub>2</sub>)= ... =h(x<sub>t</sub>)



#### Multi-collisions on iterated hash function (2)



- for IV: collision for block 1:  $x_1$ ,  $x'_1$
- for  $H_1$ : collision for block 2:  $x_2$ ,  $x'_2$
- for H<sub>2</sub>: collision for block 3:  $x_3$ ,  $x'_3$
- for  $H_3$ : collision for block 4:  $x_4$ ,  $x'_4$
- now  $h(x_1||x_2||x_3||x_4) = h(x_1'||x_2||x_3||x_4) = h(x_1'||x_2'||x_3||x_4) = \dots$ =  $h(x_1'||x_2'||x_3'||x_4)$  a 16-fold collision (time: 4 collisions)

#### Multi-collisions [Joux '04]

- finding multi-collisions for an iterated hash function is not much harder than finding a single collision (if the size of the internal memory is n bits)
  - algorithm
    - generate R =  $2^{n1/2}$ -fold multi-collision for h<sub>2</sub>
    - in R: search by brute force for h<sub>1</sub>
  - Time: n1. 2<sup>n2/2</sup> + 2<sup>n1/2</sup> << 2<sup>(n1 + n2)/2</sup>



consider  $h_1$  (n1-bit result) and  $h_2$  (n2-bit result), with n1  $\ge$  n2.

concatenation of 2 iterated hash functions  $(g(x)=h_1(x) || h_2(x))$ is as most as strong as the strongest of the two (even if both are independent)

• cost of collision attack against g at most  $p_{1/2} = 2p_{1/2}^{2/2} + 2p_{1/2}^{2/2} = 2(p_{1}^{2} + p_{2}^{2})/2$ 

n1.  $2^{n2/2} + 2^{n1/2} << 2^{(n1 + n2)/2}$ 

- cost of (2nd) preimage attack against g at most n1.  $2^{n2/2} + 2^{n1} + 2^{n2} << 2^{n1 + n2}$
- if either of the functions is weak, the attacks may work better



#### Summary



#### Improving MD iteration

#### salt + output transformation + counter + wide pipe



security reductions well understood many more results on property preservation impact of theory limited
#### Improving MD iteration

- degradation with use: salting (family of functions, randomization)
  - or should a salt be part of the input?
- PRO: strong output transformation g
  - also solves length extension
- long message 2<sup>nd</sup> preimage: preclude fix points
  - counter  $f \rightarrow f_i$  [Biham-Dunkelman'07]
- multi-collisions, herding: avoid breakdown at 2<sup>n/2</sup> with larger internal memory: known as wide pipe
  - e.g., extended MD4, RIPEMD, [Lucks'05]





### Block cipher (E<sub>K</sub>) based

**Davies-Meyer** 



#### **Miyaguchi-Preneel**



- output length = block length
- 12 secure compression functions (in ideal cipher model)
- requires 1 key schedule per encryption
- analysis [Black-Rogaway-Shrimpton'02], [Duo-Li'06], [Stam'09],...

#### Permutation $(\pi)$ based: sponge



#### Permutation $(\pi)$ based



#### Iteration modes and compression functions

- security of simple modes well understood
- powerful tools available
- analysis of slightly more complex schemes very difficult
- which properties are meaningful?
- which properties are preserved?
- MD versus sponge is still open debate





#### Hash function history 101



#### Performance of hash functions [Bernstein-Lange] (cycles/byte) AMD Intel Pentium D 2992 MHz (f64)



#### MDx-type hash function history



#### The complexity of collision attacks

brute force: 1 million PCs (1 year) or US\$ 100,000 hardware (4 days)



#### MD5 [Rivest'91] 4 rounds of 16 steps







#### NIST and SHA-1

| 😉 Crypto Hash Update - Mozilla Firefox 📃 🗖                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                          |                        |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------|------------------------|--|--|--|--|
| <u>File E</u> dit <u>V</u> iew <u>G</u> o <u>B</u> o                                                                                                                                                           | okmarks <u>T</u> ools <u>H</u> elp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                          | 0                      |  |  |  |  |
| 🖕 - 🍦 - 🥰 😢 🟠 🔟 http://www.csrc.nist.gov/pki/HashWorkshop/NIST%20Statement/NIST_P 💌 🛇 Go 🔎                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                          |                        |  |  |  |  |
| 🌗 🗟 HL 📄 Bart's home                                                                                                                                                                                           | 🍫 ds 🛛 🖲 Nyt 🍾 sd 📄 acm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 📄 Bruce 🕶 webmail 🖸 | kotnet 🖄 Springer/IACR 📒 | Kaart 🕜 IND 🕜 VIET 🛛 🚿 |  |  |  |  |
| Computer Security Division :         Information<br>Technology<br>Laboratory         NST           National Institute of<br>Standards and Technology         National Institute of<br>Standards and Technology |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                          |                        |  |  |  |  |
| Focus Areas                                                                                                                                                                                                    | Publications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Advisories          | Events                   | Site Map               |  |  |  |  |
| General<br>Information<br>Crypto Hash Home<br>Email Mailing List<br>AHS Tentative<br>Timeline<br>NIST's Policy on<br>Hash Functions<br>*NEW*<br>Contacts<br>Second<br>Workshop<br>Aug 24 25 2006               | <ul> <li>NIST's Policy on Hash Functions</li> <li>March 15, 2006: The SHA-2 family of hash functions (i.e., SHA-224, SHA-256, SHA-384 and SHA-512) may be used by Federal agencies for an applications using secure hash algorithms. Federal agencies should stop using SHA-1 for digital signatures, bigital time stamping and other applications that require collision resistance as soon as practical, and must use the SHA-2 family of hash functions for these applications after 2010. After 2010, Federal agencies may use SHA-1 only for the following applications: hash-based message authentication codes (HMACs); key derivation functions (KDFs); and random number generators (RNGs). Regardless of use, NIST encourages applications and protocols.</li> </ul> |                     |                          |                        |  |  |  |  |
| Done                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                          | .;;                    |  |  |  |  |

#### Rogue CA attack [Sotirov-Stevens-Appelbaum-Lenstra-Molnar-Osvik-de Weger '08]

 request user cert; by special collision this results in a fake CA cert (need to predict serial number + validity period)

impact: **rogue CA** that can issue certs that are trusted by all browsers



- 6 CAs have issued certificates signed with MD5 in 2008:
  - Rapid SSL, Free SSL (free trial certificates offered by RapidSSL), TC TrustCenter AG, RSA Data Security, Verisign.co.jp

#### Upgrades

- RIPEMD-160 is good replacement for SHA-1
- upgrading algorithms is always hard
- TLS uses MD5 || SHA-1 to protect algorithm negotiation (up to v1.1)
- upgrading negotiation algorithm is even harder: need to upgrade TLS 1.1 to TLS 1.2



#### SHA-2 [NIST'02]

- SHA-224, SHA-256, SHA-384, SHA-512
  - non-linear message expansion
  - more complex operations
  - 64/80 steps
  - SHA-384 and SHA-512: 64-bit architectures
- SHA-256 collisions: 24/64 steps [Sanadhya-Sarkar'08]
- SHA-256 preimages: 43/64 steps [Aoki+'09]
- implementations today faster than anticipated
- adoption
  - industry may migrate to SHA-2 by 2011 or may wait for SHA-3
  - very slow for TLS/IPsec (no pressing need)





#### The candidates



#### Preliminary cryptanalysis

![](_page_56_Picture_1.jpeg)

![](_page_57_Picture_0.jpeg)

#### End of Round 1 candidates

![](_page_57_Figure_2.jpeg)

#### Round 2 candidates

![](_page_58_Figure_1.jpeg)

#### Compression function/iteration

|        | Block cipher | Permutation   | MD/HAIFA       |  |
|--------|--------------|---------------|----------------|--|
| Blake  |              |               | HAIFA          |  |
| Grøstl |              | 2-permutation | MD             |  |
| JH     |              |               | JH-specific    |  |
| Keccak |              | Sponge        |                |  |
| Skein  | MMO          |               | MD*/Tree (UBI) |  |

![](_page_59_Picture_2.jpeg)

#### Properties: bits and bytes [Watanabe'10]

![](_page_60_Figure_1.jpeg)

![](_page_60_Picture_2.jpeg)

#### Security reductions [Andreeva-Mennink-P'10]

![](_page_61_Figure_1.jpeg)

**Table 1.** A schematic summary of all results. The *first* column describes the hash function construction, and the *second* and *third* column show which hash functions have a suffix-free (sf) or prefix-free (pf) padding. A *green* box indicates the existence of a non-trivial upper bound, a *red* box means that an efficient adversary is known for the security notion, and a *yellow* box indicates that no result is known, but recent literature gives some confidence in the existence of a non-trivial bound.

#### Security: SHA-3 Zoo http://ehash.iaik.tugraz.at/wiki/The\_SHA-3\_Zoo

| 🥹 The SHA-3 Zoo - The E                                                    | CRYPT Hash Function Website - Mozilla Fi                                                                                                                                                                                                             | irefox                                                                                                                                                          |                                                                                                                                                                                                       |                                                                                                                                                                                        |                                                                                                                                                                          |                                                                                                                                       |                                                                            |  |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|
| <u>File Edit View History</u>                                              | <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp                                                                                                                                                                                                         |                                                                                                                                                                 |                                                                                                                                                                                                       |                                                                                                                                                                                        |                                                                                                                                                                          |                                                                                                                                       |                                                                            |  |
| 🔇 💽 - C 🗙                                                                  | http://ehash.iaik.tugraz.at/                                                                                                                                                                                                                         | wiki/The_SHA-3_Zoo                                                                                                                                              |                                                                                                                                                                                                       |                                                                                                                                                                                        | ☆ ·                                                                                                                                                                      | Soogle Google                                                                                                                         | م                                                                          |  |
| Most Visited P Start                                                       | 💿 Bart 🚾 P 📐 DS 🌐 🛵 ★ 🛛 🖲                                                                                                                                                                                                                            | 🔛 🔜 KLk 🔡 💿 K                                                                                                                                                   | (Log 💿 Kaart 🚺 💿 wmail                                                                                                                                                                                | 🛃 Mif 📄 IFS 📄 DA 🖟                                                                                                                                                                     | 🖸 ic 📄 bscw 🌐 p 🌗                                                                                                                                                        | 🗦 FSa 📄 mob 🚾 ECI                                                                                                                     | I 💐 Win Secr                                                               |  |
| The SHA-3 Zoo - Th                                                         | e ECRYPT Hash Fu                                                                                                                                                                                                                                     |                                                                                                                                                                 |                                                                                                                                                                                                       |                                                                                                                                                                                        |                                                                                                                                                                          |                                                                                                                                       | [                                                                          |  |
| ] 🗖                                                                        |                                                                                                                                                                                                                                                      | 101                                                                                                                                                             |                                                                                                                                                                                                       |                                                                                                                                                                                        |                                                                                                                                                                          | 🤱 Log i                                                                                                                               | n / create account                                                         |  |
|                                                                            | article edit history                                                                                                                                                                                                                                 |                                                                                                                                                                 |                                                                                                                                                                                                       |                                                                                                                                                                                        |                                                                                                                                                                          |                                                                                                                                       |                                                                            |  |
| ECRYPT II                                                                  | The SHA-3 Zoo                                                                                                                                                                                                                                        |                                                                                                                                                                 |                                                                                                                                                                                                       |                                                                                                                                                                                        |                                                                                                                                                                          |                                                                                                                                       |                                                                            |  |
| ht 中心 合ひ へ t<br>navigation<br>= The eHash Main Page<br>= Hash Function Zoo | The SHA-3 Zoo (work in progress) is a overview of design and cryptanalysis of page, we also collect hardware implem<br>The idea of the SHA-3 Zoo is to give a g to NIST. However, we categorize the cry                                              | collection of cryptogra;<br>all submissions. A lis<br>ientation results of the<br>lood overview of crypta<br>ptanalytic results by th<br>o the SHA-3 competitio | ohic hash functions (in alpha<br>t of all SHA-3 submitters is al<br>candidates. Another categor<br>nalytic results. We try to avoic<br>eir impact from very theoretic<br>on are publicly known and av | betical order) submitted to<br>so available. For a softwar<br>ization of the SHA-3 submi-<br>l additional judgement whe<br>to practical attacks. A detai<br>ailable, 51 submissions ba | the SHA-3 contest & (see<br>e performance related ow<br>ssions can be found here<br>ether a submission is bro<br>iled description is given ir<br>ave advanced to Bound 1 | also here 딸). It aims to<br>erview, see eBASH 값, A<br>값.<br>ken. The answer to this<br>n Cryptanalysis Catego<br>값 and 14 submissions | o provide an<br>At a separate<br>question is left<br>ries.<br>have made it |  |
| <ul> <li>SHA-3 Zoo</li> <li>Recent changes</li> </ul>                      | At this time, so out or 64 submissions to the SHA-3 competition are publicly known and available. 51 submissions have advanced to Round 1 @ and 14 submissions have made it into Round 2 @.                                                          |                                                                                                                                                                 |                                                                                                                                                                                                       |                                                                                                                                                                                        |                                                                                                                                                                          |                                                                                                                                       |                                                                            |  |
| <ul><li>Random page</li><li>Help</li></ul>                                 | The following table should give a first impression on the remaining SHA-3 candidates. It shows only the best known attack, more detailed results are collected at the individual hash function pages. A description of the main table is given here. |                                                                                                                                                                 |                                                                                                                                                                                                       |                                                                                                                                                                                        |                                                                                                                                                                          |                                                                                                                                       |                                                                            |  |
| search                                                                     | Recent updates of the SHA-3 Zoo 🖗                                                                                                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                                                                                       |                                                                                                                                                                                        |                                                                                                                                                                          |                                                                                                                                       |                                                                            |  |
| Go Search                                                                  | New: Round 2 tweaks for all candidates                                                                                                                                                                                                               | s 🗗                                                                                                                                                             |                                                                                                                                                                                                       |                                                                                                                                                                                        |                                                                                                                                                                          |                                                                                                                                       |                                                                            |  |
| toolbox<br>What links here                                                 |                                                                                                                                                                                                                                                      | Hash Name                                                                                                                                                       | Principal Submitter                                                                                                                                                                                   | Best Attack on Main<br>NIST Requirements                                                                                                                                               | Best Attack on other<br>Hash Requirements                                                                                                                                |                                                                                                                                       |                                                                            |  |
| <ul> <li>Related changes</li> <li>Upload file</li> </ul>                   |                                                                                                                                                                                                                                                      | BLAKE                                                                                                                                                           | Jean-Philippe Aumasson                                                                                                                                                                                |                                                                                                                                                                                        |                                                                                                                                                                          |                                                                                                                                       |                                                                            |  |
| <ul> <li>Special pages</li> </ul>                                          |                                                                                                                                                                                                                                                      | Blue Midnight Wish                                                                                                                                              | Svein Johan Knanskog                                                                                                                                                                                  |                                                                                                                                                                                        |                                                                                                                                                                          |                                                                                                                                       |                                                                            |  |
| Printable version     Permanent link                                       |                                                                                                                                                                                                                                                      | CubeHash                                                                                                                                                        | Daniel I Bernstein                                                                                                                                                                                    | preimage                                                                                                                                                                               |                                                                                                                                                                          |                                                                                                                                       |                                                                            |  |
|                                                                            |                                                                                                                                                                                                                                                      | FOLIO                                                                                                                                                           | Lansi Ollhart                                                                                                                                                                                         | prennage                                                                                                                                                                               |                                                                                                                                                                          |                                                                                                                                       |                                                                            |  |
|                                                                            |                                                                                                                                                                                                                                                      | ECHU                                                                                                                                                            | Henri Gilbert                                                                                                                                                                                         |                                                                                                                                                                                        |                                                                                                                                                                          |                                                                                                                                       |                                                                            |  |
|                                                                            |                                                                                                                                                                                                                                                      | Fugue                                                                                                                                                           | Charanjit S. Jutla                                                                                                                                                                                    |                                                                                                                                                                                        |                                                                                                                                                                          |                                                                                                                                       |                                                                            |  |
|                                                                            |                                                                                                                                                                                                                                                      | Grøsti                                                                                                                                                          | Lars R. Knudsen                                                                                                                                                                                       |                                                                                                                                                                                        |                                                                                                                                                                          |                                                                                                                                       |                                                                            |  |
|                                                                            |                                                                                                                                                                                                                                                      | Hamsi                                                                                                                                                           | Özgül Küçük                                                                                                                                                                                           |                                                                                                                                                                                        |                                                                                                                                                                          |                                                                                                                                       |                                                                            |  |
| Done                                                                       |                                                                                                                                                                                                                                                      |                                                                                                                                                                 |                                                                                                                                                                                                       |                                                                                                                                                                                        |                                                                                                                                                                          |                                                                                                                                       | S                                                                          |  |

#### Software performance [Bernstein-Lange10] http://bench.cr.yp.to/ebash.html cycles/byte on 3.2 GHz, AMD Phenom II X6 1090T (100fa0)

![](_page_63_Figure_1.jpeg)

#### Hardware: post-place & route results for ASIC 130nm [Guo-Huang-Nazhandali-Schaumont'10]

![](_page_64_Figure_1.jpeg)

ide credit: Patrick Schaumont, Virginia Tech

#### Issues arisen during Round 1

- round 1 was very short; several functions received no outside analysis
- security
  - some controversy on complexity and relevance of attacks
  - proofs have not helped much to survive
- performance
  - weak performance resulted in elimination
- 7/14 designs tweaked at the beginning of round 2

![](_page_65_Picture_8.jpeg)

#### Issues arisen during Round 2

- security
  - few real attacks but some weaknesses
  - new design ideas harder to validate
- performance: roughly as fast or faster than SHA-2
  - SHA-2 gets faster every day
  - widely different results for hardware and software
    - software: large difference between high end and embedded
    - hardware: FGPA and ASIC
  - what about lightweight devices and 128-core machines?
- diversity = third selection criterion
- expect more tweaks before final
- variable number of rounds?
- NIST expects that SHA-2 and SHA-3 will co-exist

![](_page_66_Picture_14.jpeg)

![](_page_67_Picture_0.jpeg)

![](_page_67_Picture_1.jpeg)

- Blake
- JH
- Grøstl
- Keccak
- Skein

![](_page_67_Picture_7.jpeg)

#### SHA-4?

- an open competition such as SHA-3 is bound to result in new insights between 2008-2012
- only few of these can be incorporated using "tweaks"
- the winner selected in 2012 will reflect the state of the art in October 2008
- nevertheless, it is unlikely that we will have a SHA-4 competition before 2030

![](_page_68_Picture_5.jpeg)

- SHA-1 would have needed 128-160 steps instead of 80
- 2004-2009 attacks: cryptographic meltdown but not dramatic for most applications

- clear warning: upgrade asap

- half-life of a hash function is < 1 year</li>
- theory is developing for more robust iteration modes and extra features; still early for building blocks
- nirwana: efficient hash functions with security reductions

![](_page_69_Picture_7.jpeg)

![](_page_70_Picture_0.jpeg)

# The end

## Thank you for your attention

![](_page_70_Picture_3.jpeg)

![](_page_70_Picture_4.jpeg)

![](_page_71_Figure_0.jpeg)
#### Brute force collision search

- low memory and parallel implementation of the birthday attack [Pollard'78][Quisquater'89][Wiener-van Oorschot'94]
- distinguished point (d bits)
  - Θ(e2<sup>n/2</sup> + e 2<sup>d+1</sup>) steps with e the cost of one function evaluation
  - $\Theta(n2^{n/2-d})$  memory
  - full cost:  $\Theta(e n 2^{n/2})$  [Wiener'02]



h

h(x)



## Functional graph of f(x) = x<sup>2</sup> + 7 mod 11



• Exercise: why is the indegree of 5 nodes equal to 0 resp. 2?



#### Tree structure: parallelism

[Damgård'89], [Pal-Sarkar'03]



#### **Rebound Attack**

#### a new variant of differential cryptanalysis



developed during the design of Grøstl [MRST09]

already successfully applied to Whirlpool and the SHA-3 candidates Twister, Lane, and reduced versions of others



### MD5 [Rivest'91]

- 4 rounds (64 steps)
- pseudo-collisions [denBoer-Bosselaers'93]
- collisions for compression function [Dobbertin'96]
- collisions for hash function
  - [Wang+'04] 15 minutes
  - ...
  - [Stevens+'09] milliseconds
  - brute force (2<sup>64</sup>): 1M\$ 8 hours in 2010
- 2<sup>nd</sup> preimage in 2<sup>123</sup> [Sasaki-Aoki'09]





- advice (RIPE since '92, RSA since '96): stop using MD5
- largely ignored by industry until 2009 (click on a cert...)

| Certificate                        | ? ×                            |  |
|------------------------------------|--------------------------------|--|
| General Details Certification Path | 1                              |  |
|                                    | <u> </u>                       |  |
| Show: KAIN                         |                                |  |
| Field                              | Value                          |  |
|                                    | Value                          |  |
| E Serial Number                    | 3C36 1D05 ED01 5377 934C 4     |  |
| 🔚 Signature Algorithm              | md5RSA                         |  |
| E Issuer                           | www.verisign.com/CPS Incorp    |  |
| Valid From                         | Wednesday, June 04, 2003 1:0   |  |
| Valid To                           | Saturday, June 04, 2005 12:59: |  |
|                                    | WWW.Verisign.com, Lerms or us  |  |
|                                    | 113A (1024 bits)               |  |
|                                    |                                |  |
|                                    |                                |  |
|                                    |                                |  |
|                                    |                                |  |
|                                    |                                |  |
|                                    |                                |  |
|                                    |                                |  |
| E                                  | dit Properties Copy to File    |  |
|                                    |                                |  |
|                                    | UK                             |  |



## SHA(-0) [NIST'93]

- now called SHA-0, because of '94 of publication SHA-1
- very similar to MD5:
  - 16 extra steps (from 64 to 80)
  - message expansion uses bitwise code rather than repetition
    - $\mathsf{w}_{j} \leftarrow (\mathsf{w}_{j-3} \oplus \mathsf{w}_{j-8} \oplus \mathsf{w}_{j-14} \oplus \mathsf{w}_{j-16}) \ j{>}15$
  - quasicyclic code with  $d_{min} = 23$
- 1994: withdrawn by NIST for unidentified flaw
- 2004: collisions for in 2<sup>51</sup> [Joux+'04]
- 2005: collisions in 2<sup>39</sup> [Wang+'05]
- 2007: collisions in 2<sup>32</sup> [Joux+'07]
- 2008: collisions in 1 hour [Manuel-Peyrin'08]
- 2008: preimages for 52 of 80 steps in 2<sup>156.6</sup> [Aoki-Sasaki'09]

#### SHA-1 [NIST'95]

- fix to SHA-0
- add rotation to message expansion: quasicyclic code,  $d_{min} = 25$  $w_i \leftarrow (w_{i-3} \oplus w_{i-8} \oplus w_{i-14} \oplus w_{i-16}) >> 1 \quad j > 15$ 
  - 53 steps [Oswald-Rijmen'04 and Biham-Chen'04]
- 58 steps [Wang+'05]
  64 steps in 2<sup>35</sup> highly structured [De Cannière-Rechberger'06-'07]:
  70 steps in 2<sup>44</sup> highly structured [De Cannière-Rechberger'06-'07]:
  70 steps 2<sup>39</sup> (4 days on a PC) [Joux-Peyrin'07]
  2<sup>69</sup> [Wang+'05]
  2<sup>63</sup> ? [Wang+'05 unpublished]

  - 2<sup>51</sup> ? [Sugita+'06]
  - 2<sup>62</sup> ? [Mendel+'08 unpublished]
  - 2<sup>52</sup> ?? [McDonald+'09 unpublished]

preimages for 48/80 steps in 2<sup>160-ε</sup> [Aoki-Sasaki'09]



# Impact of collisions

- collisions for MD5, SHA-0, SHA-1
  - 2 messages differ in a few bits in 1 to 3 512-bit input blocks

↓ ↓↓

- limited control over message bits in these blocks
- but arbitrary choice of bits before and after them

- what is achievable for MD5?
  - 2 colliding executables/postscript/gif/...[Lucks-Daum'05]
  - 2 colliding RSA public keys thus with colliding X.509 certificates [Lenstra+'04]
  - chosen prefix attack: different IDs, same certificate [Stevens+'07]
  - 2 arbitrary colliding files (no constraints) in 8 hours for 1 M\$



#### Impact of MD5 collisions

- digital signatures: only an issue if for nonrepudiation
- none for signatures computed before attacks were public (1 August 2004)
- none for certificates if public keys are generated at random in a controlled environment
- substantial for signatures after 1 August 2005 (cf. traffic tickets in Australia)



#### And (2<sup>nd</sup>) preimages?

- security degrades with number of applications
- for large messages even with the number of blocks (cf. supra)
- specific results:
  - MD2: 2<sup>73</sup> [Knudsen+09]
  - MD4: 2<sup>102</sup> [Leurent'08]
  - MD5: 2<sup>123</sup> [Sasaki-Aoki'09]
  - SHA-0: 52 of 80 steps in 2<sup>156.6</sup> [Aoki-Sasaki'09]
  - SHA-1: 48 of 80 steps in 2<sup>159.3</sup> [Aoki-Sasaki'09]



#### • HMAC keys through the IV (plaintext)

collisions for MD5 invalidate current security proof of HMAC-MD5

|       | Rounds in f2 | Rounds in f1 | Data complexity                                 |
|-------|--------------|--------------|-------------------------------------------------|
| MD4   | 48           | 48           | 2 <sup>72</sup> CP + 2 <sup>77</sup> time       |
| MD5   | 64           | 33 of 64     | 2 <sup>126.1</sup> CP                           |
| MD5   | 64           | 64           | 2 <sup>51</sup> CP & 2 <sup>100</sup> time (RK) |
| SHA-0 | 80           | 80           | 2 <sup>109</sup> CP                             |
| SHA-1 | 80           | 53 of 80     | 2 <sup>98.5</sup> CP                            |



HMAC



#### [Arbitman-Dogon-Lyubashevsky-Micciancio- Peikert-Rosen'08]

- compression function:
  - SWIFFT: FFT-like operation from  $(Z_2^{32})^{64}$  to  $Z_{257}^{64}$
  - sandwich: 3xSWIFFT S-boxes 1xSWIFFT
- asymptotic proof of security: "it can be formally proved that finding a collision in a randomly-chosen compression function from the SWIFFTX family is at least as hard as finding short vectors in cyclic/ideal lattices over the ring Z[α]/(α<sup>n</sup>+1) is in the worst case."
- note: SWIFFT mapping is linear and some heuristics are needed to "kill" the linearity
- speed: 57 cpb

SWIFF

- compression function: multiplication of vector of Hamming weight w with a truncated quasi-cyclic binary matrix
  - can be interpreted as a syndrome computation of an error pattern with weight w
- MD iteration with Whirlpool as output transformation
- security can be reduced to:

(Computational Syndrome Decoding) Given a binary  $r \times n$ matrix H, a word  $s \in \{0,1\}^r$  and an integer w > 0, find a word  $e \in \{0,1\}^n$  of Hamming weight  $\leq w$  such that  $eH^T = s$ .

(Codeword Finding) Given a binary  $r \ge n$  matrix H and an integer w > 0, and a non-zero word  $e \in \{0,1\}^n$  of Hamming weight  $\leq w$  with an all zero H-syndrome.

• 324 cpb (can be optimized)



• Zémor-Tillich: consider the 2 generators of the group SL(2; F<sub>2<sup>n</sup></sub>)

$$A_0 = \begin{pmatrix} x & 1 \\ 1 & 0 \end{pmatrix} \qquad A_1 = \begin{pmatrix} x & x+1 \\ 1 & 1 \end{pmatrix}$$

the hash value of a string x with elements x[i] is  $\Pi_{i=1}^{n} A_{x[i]}$ 

- ZesT = vectorial version of the Zémor-Tillich function iterated 2x
- security: ZesT is collision resistant if and only if the balance problem is hard and in particular if the representation problem is hard for the group SL(2; F<sub>2</sub>n) and the generators A<sub>0</sub> and A<sub>1</sub>
- performance: 10-20 times slower than SHA-512 but parallelism

More details: PhD thesis of Christophe Petit, UCL, May 2009



Original ZT scheme broken in 2009 see IACR eprint [Grassl-Ilic-Magliveras-Steinwandt'09]