
Insert	 presenter	 logo	
here	 on	 slide	 master	

Title of Presentation

Bart Preneel
Katholieke Universiteit Leuven - COSIC

firstname.lastname@esat.kuleuven.be

Cryptographic Hash Functions:
Theory and Practice

www.ecrypt.eu.org

2

Hash functions

X.509 Annex D
MDC-2
MD2, MD4, MD5

SHA-1

This is an input to a crypto-
graphic hash function. The input
is a very long string, that is
reduced by the hash function to a
string of fixed length. There are
additional security conditions: it
should be very hard to find an
input hashing to a given value (a
preimage) or to find two colliding
inputs (a collision).

1A3FD4128A198FB3CA345932 h

RIPEMD-160
SHA-256
SHA-512

SHA-3

3

Applications

•  short unique identifier to a string
–  digital signatures
–  data authentication

•  one-way function of a string
–  protection of passwords
–  micro-payments

•  confirmation of knowledge/commitment

•  pseudo-random string generation/key derivation
•  entropy extraction
•  construction of MAC algorithms, stream ciphers, block

ciphers,…

2005: 800 uses of MD5 in Microsoft Windows

4

Agenda

Definitions

Iterations (modes)

Compression functions

SHA-{0,1,2}

4

SHA-3 bits and bytes

5

Hash function flavours

cryptographic hash function

MDC MAC

OWHF CRHF
UOWHF

(TCR)

this
talk

6

Informal definitions

• no secret parameters
•  input string x of arbitrary length ⇒ output h(x) of

fixed bitlength n
•  computation “easy”

• One Way Hash Function (OWHF)
–  preimage resistance
–  2nd preimage resistance

• Collision Resistant Hash Function (CRHF): OWHF +
–  collision resistant

7

Security requirements (n-bit result)

h

?

h(x)

h

x

h(x)

h

?

h(x’)

h

?

h

?

=

≠

=

preimage 2nd preimage collision

2n 2n 2n/2

≠

h(x’) h(x)

8

Preimage resistance

h

?

h(x)

preimage

2n

•  in a password file, one does not store
–  (username, password)

• but
–  (username,hash(password))

•  this is sufficient to verify a password
• an attacker with access to the

password file has to find a preimage

9

Second preimage resistance

h

x

h(x)

h

?

h(x’) =

2nd preimage

2n

≠

•  an attacker can modify x but not h(x)
•  he can only fool the recipient if he

finds a second preimage of x

h(x)

Channel 2: low capacity but secure
(= authenticated – cannot be modified)

x

Channel 1: high capacity and insecure

10

Collision resistance (1/2)

h h

x

=

≠
collision

2n/2

h(x’) h(x)

•  hacker Alice prepares two versions
of a software driver for the O/S
company Bob
–  x is correct code
–  x’ contains a backdoor that gives Alice

access to the machine

•  Alice submits x for inspection to Bob

x’

•  if Bob is satisfied, he digitally signs h
(x) with his private key

•  Alice now distributes x’ to users of
the O/S; these users verify the
signature with Bob’s public key

•  this signature works for x and for x’,
since h(x) = h(x’)!

11

Collision resistance (2/2)

h h

x

=

≠
collision

2n/2

h(x’) h(x)

•  in many cryptographic protocols,
Alice wants to commit to a value x
without revealing it

•  Alice picks a secret random string r
and sends y = h(x || r) to Bob

x’

•  in a later phase of the protocol, Alice
reveals x and r to Bob and he
checks that y is correct

•  if Alice can find a collision, that is
(x,r) and (x’,r’) with x’ ≠ x she can
cheat

•  if Bob can find a preimage, he can
learn x and cheat

12

Brute force (2nd) preimage

•  multiple target second preimage (1 out of many):
–  if one can attack 2t simultaneous targets, the effort to find a single

preimage is 2n-t

•  multiple target second preimage (many out of
many):
–  time-memory trade-off with Θ(2n) precomputation and

storage Θ(22n/3) time per (2nd) preimage: Θ(22n/3)
[Hellman’80]

•  answer: randomize hash function with a parameter S
(salt, key, spice,…)

13

The birthday paradox

•  given a set with S elements
•  choose r elements at random (with replacements)

with r « S
•  the probability p that there are at least 2 equal

elements (a collision) ≅ 1 - exp (- r(r-1)/2S)
•  more precisely, it can be shown that

–  p ≥ 1 - exp (- r(r-1)/2S)
–  if r < √2S then p ≥ 0.6 r (r-1)/2S

14

How to find collisions?

I = space of pairs of messages;
size ≈ (2264) 2

C = space of all input messages that
collide under h

|C| ≈ 2-n | I |

I

C

Collision search algorithm 1

Pick 2n random message pairs (x,x’)

For each pair, Prob(h(x)=h(x’)=2-n)

You expect to find a collision, that is, a
non-empty intersection with C

T

15

How to find collisions?

I

C

Collision search algorithm 2

Pick a set R of 2n/2 random messages

Find a collision

You expect to find a collision, that is, a
non-empty intersection with C as there
are about 2n/2 distinct pairs in R

R

I = space of pairs of messages;
size ≈ (2264) 2

C = space of all input messages that
collide under h

|C| ≈ 2-n | I |

16

Collision resistance

•  hard to achieve in practice
–  many attacks
–  requires double output length 2n/2 versus 2n

•  hard to achieve in theory
–  [Simon’98] one cannot derive collision resistance from “general”

preimage resistance (there exists no black box reduction)

•  hard to formalize: requires
–  family of functions: key, parameter, salt, spice,…
–  “human ignorance” trick [Stinson’06], [Rogaway’06]

16

17

Relation between properties

[Rogaway-Shrimpton’04]

[Stinson’06]

[Reyhanitabar-Susilo-Mu’10]

[Andreeva-Stam’10]

Even if Coll ⇒ xSEC/Pre:
bound always 2n/2 << 2n

18

Brute force attacks in practice

•  (2nd) preimage search
–  n = 128: 23 B$ for 1 year if one can attack 240 targets in

parallel

•  parallel collision search: small memory using
cycle finding algorithms (distinguished points)
–  n = 128: 1 M$ for 8 hours (or 1 year on 100K PCs)
–  n = 160: 90 M$ for 1 year
–  need 256-bit result for long term security (30 years or more)

19

Quantum computers

•  in principle exponential parallelism
•  inverting a one-way function: 2n reduced to 2n/2

[Grover’96]

•  collision search:
–  2n/3 computation + hardware [Brassard-Hoyer-Tapp’98]
–  [Bernstein’09] classical collision search requires 2n/4 computation

and hardware (= standard cost of 2n/2)

20

Properties in practice

•  collision resistance is not always necessary
• other properties are needed:

–  PRF: pseudo-randomness if keyed (with secret key)
–  PRO: pseudo-random oracle property
–  near-collision resistance
–  partial preimage resistance (most of input known)
–  multiplication freeness

• how to formalize these requirements and the
relation between them?

21

Iteration
(mode of compression function)

21

22

How not to construct a hash function

•  Divide the message into t blocks xi of n bits each

Message block 1: x1

⊕
Message block 2: x2

⊕

Message block t: xt

=

⊕

Hash value h(x)

…

23

Hash function: iterated structure

Split messages into blocks of fixed length and hash
them block by block with a compression function f

Efficient and elegant
But …

f

x1

IV
f

x2

H1
f

x3

H2
f

x4

H3
g

24

Security relation between f and h

•  iterating f can degrade its security
–  trivial example: 2nd preimage

f
x1

IV
f

x2

H1
f

x3

H2
f

x4

H3 g

f
x2

IV = H1
f

x3

H2
f

x4

H3 g

25

Security relation between f and h (2)

•  solution: Merkle-Damgård (MD) strengthening
–  fix IV, use unambiguous padding and insert length at the end

•  f is collision resistant ⇒ h is collision resistant
 [Merkle’89-Damgård’89]

•  f is ideally 2nd preimage resistant ⇔ h is ideally 2nd
preimage resistant [Lai-Massey’92]

?

•  few hash functions have a strong compression function

•  very few hash functions treat xi and Hi-1 in the same way

26

Security relation between f and h (3)

length extension: if one knows h(x), easy to compute h(x || y) without knowing x or IV

f

x1

IV
f

x2

H1
f

x3

H2
f

x4

H3
g

solution: output transformation

f
x1

IV
f

x2

H1

f
x3

H2 H3= h(x)

f

x1

IV
f

x2

H1

f
x3

H2
f

y

H3 H4= h(x || y)

27

Property preservation
[Andreeva-Mennink-P’10] for overview

Sec/Pre preservation seems to be problematic
Is Pre preservation meaningful?

Coll Sec Pre Pro aSec eSec aPre ePre

Suffix- &
Prefix-free MD

Not applicable

Envelope MD

BCM ?
Haifa

RMX

Shoup UOWH

ROX

28

More on property preservation/domain extension

•  PRO preservation ⇒ Col, Sec and Pre for ideal
compression function
–  but for narrow pipe bounds for Sec and Pre are at most 2n/2 rather

than 2n

•  […]

29

Attacks on MD-type iterations

•  multi-collision attack and impact on concatenation [Joux’04]
•  long message 2nd preimage attack

[Dean-Felten-Hu'99], [Kelsey-Schneier’05]
–  Sec security degrades lineary with number 2t of message blocks

hashed: 2n-t+1 + t 2n/2+1

–  appending the length does not help here!
•  herding attack [Kelsey-Kohno’06]

–  reduces security of commitment using a hash function from 2n

–  on-line 2n-t + precomputation 2.2(n+t)/2 + storage 2t

30

How (NOT) to strengthen a hash function?
 [Joux’04]

•  answer: concatenation
•  h1 (n1-bit result) and h2 (n2-bit result)

h2 h1

g(x) = h1(x) || h2(x)

•  intuition: the strength of g against
collision/(2nd) preimage attacks is the
product of the strength of h1 and h2
—  if both are “independent”

•  but….

31

Multiple collisions ≠ multi-collision

Assume “ideal” hash function h with n-bit result
•  Θ(2n/2) evaluations of h (or steps): 1 collision

–  h(x)=h(x’)

•  Θ(r. 2n/2) steps: r2 collisions
–  h(x1)=h(x1’) ; h(x2)=h(x2’) ; … ; h(xr2)=h(xr2’)

•  Θ(22n/3) steps: a 3-collision
–  h(x)= h(x’)=h(x’’)

•  Θ(2n(t-1)/t) steps: a t-fold collision (multi-collision)
–  h(x1)= h(x2)= … =h(xt)

32

Multi-collisions on iterated hash function (2)

•  now h(x1||x2||x3||x4) = h(x’1||x2||x3||x4) = h(x’1||x’2||x3||x4) = …
= h(x’1||x’2||x’3||x’4) a 16-fold collision (time: 4 collisions)

f

x1, x’1

IV H1
f

x2, x’2

H2
f

x4, x’4 x3, x’3

H3
f

•  for IV: collision for block 1: x1, x’1

•  for H1: collision for block 2: x2, x’2

•  for H2: collision for block 3: x3, x’3

•  for H3: collision for block 4: x4, x’4

33

Multi-collisions [Joux ’04]

•  finding multi-collisions for an iterated hash function is not
much harder than finding a single collision (if the size of the
internal memory is n bits)

h2 h1

g(x) = h1(x) || h2(x)

R • algorithm
•  generate R = 2n1/2-fold

multi-collision for h2
•  in R: search by brute

force for h1

• Time: n1. 2n2/2 + 2n1/2
 << 2(n1 + n2)/2

34

Multi-collisions [Joux ’04]

consider h1 (n1-bit result) and h2 (n2-bit result), with n1 ≥ n2.
concatenation of 2 iterated hash functions (g(x)= h1(x) || h2(x))

is as most as strong as the strongest of the two (even if both
are independent)

• cost of collision attack against g at most
 n1 . 2n2/2 + 2n1/2 << 2(n1 + n2)/2
• cost of (2nd) preimage attack against g at most
 n1 . 2n2/2 + 2n1 + 2n2 << 2n1 + n2
•  if either of the functions is weak, the attacks may work better

35

Summary

36

Improving MD iteration

salt + output transformation + counter + wide pipe

f

x1

IV
f

x2

H1

f

x3

H2

f

x4

H3 g

1

salt salt salt salt salt

|x|

security reductions well understood
many more results on property preservation
impact of theory limited

2 3 4

2n 2n 2n 2n 2n n

37

Improving MD iteration

•  degradation with use: salting (family of functions,
randomization)
–  or should a salt be part of the input?

•  PRO: strong output transformation g
–  also solves length extension

•  long message 2nd preimage: preclude fix points
–  counter f → fi [Biham-Dunkelman’07]

•  multi-collisions, herding: avoid breakdown at 2n/2
with larger internal memory: known as wide pipe
–  e.g., extended MD4, RIPEMD, [Lucks’05]

38

Compression functions

38

39

Block cipher (EK) based

Davies-Meyer

xi

E Hi-1

Hi

Miyaguchi-Preneel

xi E

Hi-1

Hi

•  output length = block length

•  12 secure compression functions (in ideal cipher model)

•  requires 1 key schedule per encryption

•  analysis [Black-Rogaway-Shrimpton’02], [Duo-Li’06], [Stam’09],…

40

Permutation (π) based: sponge

Examples: Panama, RadioGatun, Grindahl,
 Keccak (no buffer)

x1

π

H10

H20

x2

π

x3

π

x4

π π π π

h1

π

h2

absorb buffer squeeze

…

41

Permutation (π) based

small permutation

JH
xi

π

H1i-1 H1i

H2i H2i-1
Hi

Grøstl

xi

π2
Hi-1

π1

42

Iteration modes and compression functions

•  security of simple modes well understood
•  powerful tools available

•  analysis of slightly more complex schemes very
difficult

•  which properties are meaningful?
•  which properties are preserved?
•  MD versus sponge is still open debate

43

SHA-{0,1,2}

43

44

Hash function history 101

1980

1990

2000

2010

H
A

R
D

W
A

R
E

S

O
FT

W
A

R
E

DES

AES

single
block
length

double
block
length

permu-
tations

RSA

ad hoc
schemes

security
reduction
for
factoring,
DLOG,
lattices

MD2
MD4
MD5

SHA-1

RIPEMD-160

SHA-2

Whirlpool

SHA-3

SNEFRU

Dedicated

45

Performance of hash functions [Bernstein-Lange]
(cycles/byte) AMD Intel Pentium D 2992 MHz (f64)

MD5 RMD-16
0

SHA-
256

Whirl-
pool

AES- hash
(esti-
mated)

2001

46

MDx-type hash function history

MD5

SHA

SHA-1

SHA-256
SHA-512

HAVAL

Ext. MD4

RIPEMD

RIPEMD-160

MD4 90

91

92

93

94
95

02

47

The complexity of collision attacks

brute force: 1 million PCs (1 year) or US$ 100,000 hardware (4 days)

48

MD5 [Rivest’91]
4 rounds of 16 steps

A0 B0 C0 D0

A1 B1 C1 D1

A16 B16 C16 D16

x0

x15

A17 B17 C17 D17

A32 B32 C32 D32 xp(15)

xp(0)

A33 B33 C33 D33

A48 B48 C48 D48 xq(15)

xq(0)

A49 B49 C49 D49

A64 B64 C64 D64 xr(15)

xr(0)

…

…

…

…
f

f

g

g

h

h

j

j

+

H i-1

H i

xi

Ki

49

SHA-1

[Wang+’04]

[Wang+’05]
[Mendel+’08]

[McDonald+’09]

[Manuel+’09]

Most attacks
unpublished/withdrawn

[Sugita+’06]

log2 complexity

prediction: collision for SHA-1 in the next 12-18 months

50

NIST and SHA-1

51

Rogue CA attack
[Sotirov-Stevens-Appelbaum-Lenstra-Molnar-Osvik-de Weger ’08]

Self-signed
root key

CA1 CA2 Rogue CA

User1 User2 User x

•  request user cert; by special
collision this results in a fake CA
cert (need to predict serial
number + validity period)

• 6	 CAs	 have	 issued	 cer8ficates	 signed	 with	 MD5	 in	 2008:	
—  Rapid	 SSL,	 Free	 SSL	 (free	 trial	 cer8ficates	 offered	 by	 RapidSSL),	 TC	 TrustCenter	 AG,	 RSA	

Data	 Security,	 Verisign.co.jp	

	 	 	 impact:	 rogue	 CA	 that	
can	 issue	 certs	 that	
are	 trusted	 by	 all	
browsers	

52

Upgrades

•  RIPEMD-160 is good replacement for SHA-1

•  upgrading algorithms is always hard

•  TLS uses MD5 || SHA-1 to protect algorithm
negotiation (up to v1.1)

•  upgrading negotiation algorithm is even
harder: need to upgrade TLS 1.1 to TLS 1.2

53

SHA-2 [NIST‘02]

• SHA-224, SHA-256, SHA-384, SHA-512
–  non-linear message expansion
–  more complex operations
–  64/80 steps
–  SHA-384 and SHA-512: 64-bit architectures

• SHA-256 collisions: 24/64 steps [Sanadhya-Sarkar’08]

• SHA-256 preimages: 43/64 steps [Aoki+’09]

•  implementations today faster than anticipated

• adoption
–  industry may migrate to SHA-2 by 2011 or may wait for SHA-3
–  very slow for TLS/IPsec (no pressing need)

54

SHA-3
(bits and bytes)

54

55

NIST AHS competition (SHA-3)

•  SHA-3 must support 224, 256, 384, and 512-bit message
digests, and must support a maximum message length of at
least 264 bits

round 1
round 2

final

Call: 02/11/07
Deadline (64): 31/10/08

Round 1 (51): 9/12/08

Round 2 (14): 24/7/09

Final (5): 9/12/10

Standard: 2012

56

The candidates

Slide credit: Christophe De Cannière

57

Preliminary cryptanalysis

Slide credit: Christophe De Cannière

58

End of Round 1 candidates

a

Slide credit: Christophe De Cannière

59

Round 2 candidates

a

Slide credit: Christophe De Cannière

60

Compression function/iteration

Block cipher Permutation MD/HAIFA
Blake HAIFA
Grøstl 2-permutation MD
JH JH-specific
Keccak Sponge
Skein MMO MD*/Tree (UBI)
BMW PGV variant MD
Cubehash Sponge-type
ECHO HAIFA
Fugue Spong-type
Hamsi
Luffa Sponge-type
Shabal Sponge-type
Shavite-3 Davies-Meyer HAIFA
SIMD PGV variant MD

61

Properties: bits and bytes
[Watanabe’10]

62

Security reductions
[Andreeva-Mennink-P’10]

63

Security: SHA-3 Zoo
http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo

64

Software performance
[Bernstein-Lange10] http://bench.cr.yp.to/ebash.html

cycles/byte on 3.2 GHz, AMD Phenom II X6 1090T (100fa0)

512/256-bit
hash

64-bit machine
so 512-bit
version is often
faster

BMW
Cubehash

Fuge
Groestl

JH
Keccak

Shabal
Shavite-3

Skein
SHA-2

SHA-2

65

Hardware: post-place & route results for
ASIC 130nm [Guo-Huang-Nazhandali-Schaumont’10]

0	

4	

8	

12	

16	

20	

0	 40,000	 80,000	 120,000	 160,000	 200,000	

SHA256	

Blake	

BMW	

CubeHash	

ECHO	

Fugue	

Grostl	

Hamsi	

JH	

Keccak	

Luffa	

Shabal	

SHAvite	

SIMD	

Skein	

Area	
(GateEqv)	

Throughput	
(Gbps)	

Slide credit: Patrick Schaumont, Virginia Tech

Keccak

Grøstl

JH

Skein

Blake

66

Issues arisen during Round 1

•  round 1 was very short; several functions received
no outside analysis

•  security
–  some controversy on complexity and relevance of attacks
–  proofs have not helped much to survive

• performance
–  weak performance resulted in elimination

• 7/14 designs tweaked at the beginning of round 2

67

Issues arisen during Round 2

•  security
–  few real attacks but some weaknesses
–  new design ideas harder to validate

•  performance: roughly as fast or faster than SHA-2
–  SHA-2 gets faster every day
–  widely different results for hardware and software

•  software: large difference between high end and embedded
•  hardware: FGPA and ASIC

–  what about lightweight devices and 128-core machines?
•  diversity = third selection criterion

•  expect more tweaks before final
•  variable number of rounds?
•  NIST expects that SHA-2 and SHA-3 will co-exist

68

Final

•  Blake
•  JH
•  Grøstl
•  Keccak
•  Skein

69

SHA-4?

• an open competition such as SHA-3 is bound to
result in new insights between 2008-2012

• only few of these can be incorporated using
“tweaks”

•  the winner selected in 2012 will reflect the state
of the art in October 2008

• nevertheless, it is unlikely that we will have a
SHA-4 competition before 2030

70

Hash functions: conclusions

•  SHA-1 would have needed 128-160 steps
instead of 80

•  2004-2009 attacks: cryptographic meltdown but
not dramatic for most applications
–  clear warning: upgrade asap

•  half-life of a hash function is < 1 year
•  theory is developing for more robust iteration

modes and extra features; still early for building
blocks

•  nirwana: efficient hash functions with security
reductions

71

The end

Thank you for
your attention

72

Brute force collision search

•  Consider the functional graph of h
h(x) x h

collision

h(x) h2(x)

x
h(x)

h2(x)

73

Brute force collision search

•  low memory and parallel
implementation of the birthday attack
[Pollard’78][Quisquater’89][Wiener-van Oorschot’94]

•  distinguished point (d bits)
–  Θ(e2n/2 + e 2d+1) steps with e the cost of one

function evaluation
–  Θ(n2n/2-d) memory
–  full cost: Θ(e n2n/2) [Wiener’02]

l

c

l = c = (π/8) 2n/2

h(x) x h

74

Functional graph of f(x) = x2 +
7 mod 11

•  Exercise: why is the indegree of 5 nodes equal to 0 resp. 2?

9 2

7
4

1

8

5 10

3 6

0

75

Tree structure: parallelism

[Damgård’89], [Pal-Sarkar’03]

f

x1

f

f f

x2 x3 x4 x5

f

f f

x6 x7 x8

76

Rebound Attack

a new variant of differential cryptanalysis

developed during the design of Grøstl [MRST09]
already successfully applied to Whirlpool and the SHA-3
candidates Twister, Lane, and reduced versions of others

Slide credit: Christian Rechberger

77

MD5 [Rivest’91]

•  4 rounds (64 steps)
•  pseudo-collisions [denBoer-Bosselaers’93]
•  collisions for compression function [Dobbertin’96]

•  collisions for hash function
–  [Wang+’04] – 15 minutes
–  …
–  [Stevens+’09] – milliseconds
–  brute force (264): 1M$ 8 hours in 2010

•  2nd preimage in 2123 [Sasaki-Aoki’09]

78

MD5

•  advice (RIPE since ‘92,
RSA since ‘96): stop
using MD5

•  largely ignored by
industry until 2009
(click on a cert...)

79

SHA(-0) [NIST’93]

•  now called SHA-0, because of ’94 of publication SHA-1
•  very similar to MD5:

–  16 extra steps (from 64 to 80)
–  message expansion uses bitwise code rather than repetition

 wj ← (wj−3 ⊕ wj−8 ⊕ wj−14 ⊕ wj−16) j>15
–  quasicyclic code with dmin = 23

•  1994: withdrawn by NIST for unidentified flaw
•  2004: collisions for in 251 [Joux+’04]
•  2005: collisions in 239 [Wang+’05]
•  2007: collisions in 232 [Joux+’07]

• 2008: collisions in 1 hour [Manuel-Peyrin’08]
• 2008: preimages for 52 of 80 steps in 2156.6 [Aoki-Sasaki’09]

80

•  fix to SHA-0
•  add rotation to message expansion: quasicyclic code, dmin = 25

wj ← (wj−3 ⊕ wj−8 ⊕ wj−14 ⊕ wj−16) >>> 1 j > 15

SHA-1 [NIST’95]

•  53 steps [Oswald-Rijmen’04 and Biham-Chen’04]
•  58 steps [Wang+’05]
•  64 steps in 235 – highly structured [De Cannière-Rechberger’06-’07]:
•  70 steps in 244 – highly structured [De Cannière-Rechberger’06-’07]:
•  70 steps 239 (4 days on a PC) [Joux-Peyrin’07]
•  269 [Wang+’05]
•  263 ? [Wang+’05 - unpublished]
•  251 ? [Sugita+’06]
•  262 ? [Mendel+’08 - unpublished]
•  252 ?? [McDonald+’09 - unpublished]

co
lli

si
on

s

preimages for 48/80 steps in 2160-ε [Aoki-Sasaki’09]

81

Impact of collisions

•  collisions for MD5, SHA-0, SHA-1
–  2 messages differ in a few bits in 1 to 3 512-bit input blocks
–  limited control over message bits in these blocks
–  but arbitrary choice of bits before and after them

•  what is achievable for MD5?
–  2 colliding executables/postscript/gif/…[Lucks-Daum’05]
–  2 colliding RSA public keys – thus with colliding X.509

certificates [Lenstra+’04]
–  chosen prefix attack: different IDs, same certificate

[Stevens+’07]
–  2 arbitrary colliding files (no constraints) in 8 hours

for 1 M$

82

Impact of MD5 collisions

•  digital signatures: only an issue if for non-
repudiation

•  none for signatures computed before attacks
were public (1 August 2004)

•  none for certificates if public keys are
generated at random in a controlled
environment

•  substantial for signatures after 1 August
2005 (cf. traffic tickets in Australia)

83

And (2nd) preimages?

•  security degrades with number of applications
•  for large messages even with the number of

blocks (cf. supra)
•  specific results:

–  MD2: 273 [Knudsen+09]
–  MD4: 2102 [Leurent’08]
–  MD5: 2123 [Sasaki-Aoki’09]
–  SHA-0: 52 of 80 steps in 2156.6 [Aoki-Sasaki’09]
–  SHA-1: 48 of 80 steps in 2159.3 [Aoki-Sasaki’09]

84

HMAC

• HMAC keys through the IV (plaintext)
–  collisions for MD5 invalidate current security proof of HMAC-MD5

Rounds in f2 Rounds in f1 Data complexity

MD4 48 48 272 CP + 277 time
MD5 64 33 of 64 2126.1 CP
MD5 64 64 251 CP & 2100 time (RK)
SHA-0 80 80 2109 CP
SHA-1 80 53 of 80 298.5 CP

f2

f1

x K1

K2

85

SWIFFTX
[Arbitman-Dogon-Lyubashevsky-Micciancio- Peikert-Rosen’08]

•  compression function:
–  SWIFFT: FFT-like operation from (Z2

32)64 to Z257
64

–  sandwich: 3xSWIFFT - S-boxes - 1xSWIFFT

•  asymptotic proof of security: “it can be formally
proved that finding a collision in a randomly-
chosen compression function from the SWIFFTX
family is at least as hard as finding short vectors
in cyclic/ideal lattices over the ring Z[α]/(α n+1) is
in the worst case.”

•  note: SWIFFT mapping is linear and some
heuristics are needed to “kill” the linearity

•  speed: 57 cpb

86

FSB [Augot-Finiasz-Gaborit-Manuel-Sendrier’08]

•  compression function: multiplication of vector of Hamming
weight w with a truncated quasi-cyclic binary matrix
–  can be interpreted as a syndrome computation of an error pattern with weight

w

•  MD iteration with Whirlpool as output transformation
•  security can be reduced to:
(Computational Syndrome Decoding) Given a binary r x n

matrix H, a word s ∈ {0,1}r and an integer w > 0, find a
word e ∈ {0,1}n of Hamming weight ≤ w such that eHT = s.

(Codeword Finding) Given a binary r x n matrix H and an
integer w > 0, and a non-zero word e ∈ {0,1}n of Hamming
weight ≤ w with an all zero H-syndrome.

•  324 cpb (can be optimized)

87

ZesT: a SHA-4 candidate?

•  Zémor-Tillich: consider the 2 generators of the group SL(2; F2n)
 x 1 x x+1
 A0 = A1 =
 1 0 1 1

 the hash value of a string x with elements x[i] is Πi=1
n Ax[i]

•  ZesT = vectorial version of the Zémor-Tillich function iterated 2x
•  security: ZesT is collision resistant if and only if the balance

problem is hard and in particular if the representation problem
is hard for the group SL(2; F2n) and the generators A0 and A1

•  performance: 10-20 times slower than SHA-512 but parallelism
More details: PhD thesis of Christophe Petit, UCL, May 2009

Original ZT scheme broken in 2009
see IACR eprint [Grassl-Ilic-Magliveras-Steinwandt’09]

