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Hash functions 

X.509 Annex D 
MDC-2 
MD2, MD4, MD5 

SHA-1 

This is an input to a crypto-
graphic hash function.  The input 
is a very long string, that is 
reduced by the hash function to a 
string of fixed length.  There are 
additional security conditions: it 
should be very hard to find an 
input hashing to a given value (a 
preimage) or to find two colliding 
inputs (a collision).  

1A3FD4128A198FB3CA345932 h 

RIPEMD-160 
SHA-256 
SHA-512 

SHA-3 
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Applications 

•  short unique identifier to a string 
–  digital signatures 
–  data authentication 

•  one-way function of a string 
–  protection of passwords 
–  micro-payments 

•  confirmation of knowledge/commitment 

•  pseudo-random string generation/key derivation 
•  entropy extraction 
•  construction of MAC algorithms, stream ciphers, block 

ciphers,… 

2005: 800 uses of MD5 in Microsoft Windows 



4 

Agenda 

Definitions 

Iterations (modes) 

Compression functions 

SHA-{0,1,2} 

4 

SHA-3 bits and bytes 
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Hash function flavours 

cryptographic hash function 

MDC MAC 

OWHF CRHF 
UOWHF

(TCR) 

this 
talk 
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Informal definitions 

• no secret parameters 
•  input string x of arbitrary length  ⇒ output h(x) of 

fixed bitlength n 
•  computation “easy” 

• One Way Hash Function (OWHF) 
–  preimage resistance 
–  2nd preimage resistance 

• Collision Resistant Hash Function (CRHF): OWHF + 
–  collision resistant 
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Security requirements (n-bit result) 
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Preimage resistance 

h 

? 

h(x) 

preimage 

2n  

•  in a password file, one does not store 
–   (username, password) 

• but 
–  (username,hash(password)) 

•  this is sufficient to verify a password 
• an attacker with access to the   

password file has to find a preimage 
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Second preimage resistance 

h 

x 

h(x) 

h 

? 

h(x’) = 

2nd preimage 

2n  

≠ 

•  an attacker can modify x but not h(x) 
•  he can only fool the recipient if he 

finds a second preimage of x 

h(x) 

Channel 2: low capacity but secure      
(= authenticated – cannot be modified) 

x 

Channel 1: high capacity and insecure 



10 

Collision resistance (1/2) 

h h 

x 

= 

≠ 
collision 

2n/2  

h(x’) h(x) 

•  hacker Alice prepares two versions 
of a software driver for the O/S 
company Bob 
–  x is correct code 
–  x’ contains a backdoor that gives Alice 

access to the machine 

•  Alice submits x for inspection to Bob 

x’ 

•  if Bob is satisfied, he digitally signs h
(x) with his private key  

•  Alice now distributes x’ to users of 
the O/S; these users verify the 
signature with Bob’s public key 

•  this signature works for x and for x’, 
since h(x) = h(x’)! 
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Collision resistance (2/2) 

h h 

x 

= 

≠ 
collision 

2n/2  

h(x’) h(x) 

•  in many cryptographic protocols, 
Alice wants to commit to a value x 
without revealing it 

•  Alice picks a secret random string r 
and sends y = h(x || r) to Bob 

x’ 

•  in a later phase of the protocol, Alice 
reveals x and r to Bob and he 
checks that y is correct 

•  if Alice can find a collision, that is 
(x,r) and (x’,r’) with x’ ≠ x she can 
cheat 

•  if Bob can find a preimage, he can 
learn x and cheat 
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Brute force (2nd) preimage 

•  multiple target second preimage (1 out of many):  
–  if one can attack 2t simultaneous targets, the effort to find a single 

preimage is 2n-t 

•  multiple target second preimage (many out of 
many):  
–  time-memory trade-off with Θ(2n) precomputation and 

storage Θ(22n/3) time per (2nd) preimage: Θ(22n/3) 
[Hellman’80]  

•  answer: randomize hash function with a parameter S 
(salt, key, spice,…) 
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The birthday paradox 

•  given a set with S elements 
•  choose r elements at random (with replacements) 

with r « S 
•  the probability p that there are at least 2 equal 

elements (a collision) ≅ 1 - exp (- r(r-1)/2S) 
•  more precisely, it can be shown that  

–  p ≥ 1 - exp (- r(r-1)/2S) 
–  if r < √2S  then p ≥ 0.6 r (r-1)/2S 
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How to find collisions? 

I = space of pairs of messages; 
size ≈ (2264) 2 

C = space of all input messages that 
collide under h 

|C|  ≈ 2-n | I | 

I 

C 

Collision search algorithm 1 

Pick 2n random message pairs (x,x’) 

For each pair, Prob(h(x)=h(x’)=2-n) 

You expect to find a collision, that is, a 
non-empty intersection with C  

T 
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How to find collisions? 

I 

C 

Collision search algorithm 2 

Pick a set R of 2n/2 random messages 

Find a collision 

You expect to find a collision, that is, a 
non-empty intersection with C as there 
are about 2n/2 distinct pairs in R 

R 

I = space of pairs of messages; 
size ≈ (2264) 2 

C = space of all input messages that 
collide under h 

|C|  ≈ 2-n | I | 
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Collision resistance 

•  hard to achieve in practice 
–  many attacks 
–  requires double output length 2n/2 versus 2n 

•  hard to achieve in theory 
–  [Simon’98] one cannot derive collision resistance from “general” 

preimage resistance (there exists no black box reduction) 

•  hard to formalize: requires  
–  family of functions: key, parameter, salt, spice,… 
–  “human ignorance” trick [Stinson’06], [Rogaway’06]  

16 
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Relation between properties  

[Rogaway-Shrimpton’04]  

[Stinson’06] 

[Reyhanitabar-Susilo-Mu’10] 

[Andreeva-Stam’10] 

Even if Coll ⇒ xSEC/Pre: 
bound always 2n/2 << 2n 
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Brute force attacks in practice 

•  (2nd) preimage search 
–  n = 128: 23 B$ for 1 year if one can attack 240 targets in 

parallel 

•  parallel collision search: small memory using 
cycle finding algorithms (distinguished points) 
–  n = 128: 1 M$ for 8 hours (or 1 year on 100K PCs) 
–  n = 160: 90 M$ for 1 year 
–  need 256-bit result for long term security (30 years or more) 



19 

Quantum computers 

•  in principle exponential parallelism 
•  inverting a one-way function: 2n reduced to 2n/2 

[Grover’96]  

•  collision search:  
–  2n/3 computation + hardware [Brassard-Hoyer-Tapp’98] 
–  [Bernstein’09] classical  collision search requires 2n/4 computation 

and hardware (= standard cost of 2n/2 ) 
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Properties in practice 

•  collision resistance is not always necessary 
• other properties are needed: 

–  PRF: pseudo-randomness if keyed (with secret key) 
–  PRO: pseudo-random oracle property 
–  near-collision resistance 
–  partial preimage resistance (most of input known) 
–  multiplication freeness  

• how to formalize these requirements and the 
relation between them? 
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Iteration 
(mode of compression function) 

21 
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How not to construct a hash function 

•  Divide the message into t blocks xi of n bits each 

Message block 1: x1 

⊕ 
Message block 2: x2 

⊕ 

Message block t: xt 

= 

⊕ 

Hash value h(x) 

… 
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Hash function: iterated structure 

Split messages into blocks of fixed length and hash 
them block by block with a compression function f 

Efficient and elegant 
But … 

f 

x1 

IV 
f 

x2 

H1 
f 

x3 

H2 
f 

x4 

H3 
g 
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Security relation between f and h 

•  iterating f can degrade its security 
–   trivial example: 2nd preimage 

f 
x1 

IV 
f 

x2 

H1 
f 

x3 

H2 
f 

x4 

H3 g 

f 
x2 

IV = H1 
f 

x3 

H2 
f 

x4 

H3 g 
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Security relation between f and h (2) 

•  solution: Merkle-Damgård (MD) strengthening  
–  fix IV, use unambiguous padding and insert length at the end  

•  f is collision resistant  ⇒  h is collision resistant 
 [Merkle’89-Damgård’89] 

•  f is ideally 2nd preimage resistant  ⇔ h is ideally 2nd 
preimage resistant [Lai-Massey’92]  

? 

•  few hash functions have a strong compression function  

•  very few hash functions treat xi and Hi-1 in the same way 
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Security relation between f and h (3) 

length extension: if one knows h(x), easy to compute h(x || y) without knowing x or IV 

f 

x1 

IV 
f 

x2 

H1 
f 

x3 

H2 
f 

x4 

H3 
g 

solution: output transformation 

f 
x1 

IV 
f 

x2 

H1 

f 
x3 

H2 H3= h(x) 

f 

x1 

IV 
f 

x2 

H1 

f 
x3 

H2 
f 

y 

H3 H4= h(x || y) 
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Property preservation  
[Andreeva-Mennink-P’10] for overview 

Sec/Pre preservation seems to be problematic 
Is Pre preservation meaningful? 

Coll Sec Pre Pro aSec eSec aPre ePre 

Suffix- & 
Prefix-free MD 

Not applicable 

Envelope MD 

BCM ? 
Haifa 

RMX 

Shoup UOWH 

ROX 
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More on property preservation/domain extension 

•  PRO preservation ⇒ Col, Sec and Pre for ideal 
compression function 
–  but for narrow pipe bounds for Sec and Pre are at most 2n/2 rather 

than 2n 

•  […] 
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Attacks on MD-type iterations   

•  multi-collision attack and impact on concatenation [Joux’04] 
•  long message 2nd preimage attack            

[Dean-Felten-Hu'99], [Kelsey-Schneier’05] 
–  Sec security degrades lineary with number 2t of message blocks 

hashed: 2n-t+1 + t 2n/2+1 

–  appending the length does not help here! 
•  herding attack [Kelsey-Kohno’06] 

–  reduces security of commitment using a hash function from 2n 

–  on-line 2n-t  + precomputation 2.2(n+t)/2  + storage 2t  
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How (NOT) to strengthen a hash function? 
 [Joux’04]  

•  answer: concatenation 
•  h1 (n1-bit result) and h2 (n2-bit result) 

h2 h1 

g(x) = h1(x) || h2(x) 

•  intuition: the strength of g against 
collision/(2nd) preimage attacks is the 
product of the strength of h1 and h2  
—  if both are “independent” 

•  but…. 
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Multiple collisions  ≠ multi-collision  

Assume “ideal” hash function h with n-bit result 
•  Θ(2n/2) evaluations of h (or steps): 1 collision 

–  h(x)=h(x’) 

•  Θ(r. 2n/2) steps: r2 collisions 
–  h(x1)=h(x1’) ; h(x2)=h(x2’) ; … ; h(xr2)=h(xr2’) 

•  Θ(22n/3) steps: a 3-collision 
–  h(x)= h(x’)=h(x’’) 

•  Θ(2n(t-1)/t) steps: a t-fold collision (multi-collision) 
–  h(x1)= h(x2)= … =h(xt) 
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Multi-collisions on iterated hash function (2) 

•  now h(x1||x2||x3||x4) = h(x’1||x2||x3||x4) = h(x’1||x’2||x3||x4) =    … 
= h(x’1||x’2||x’3||x’4)  a 16-fold collision (time: 4 collisions) 

f 

x1,  x’1  

IV H1 
f 

x2, x’2 

H2 
f 

x4,  x’4 x3, x’3 

H3 
f 

•  for IV: collision for block 1: x1,  x’1  

•  for H1: collision for block 2: x2,  x’2  

•  for H2: collision for block 3: x3,  x’3 

•  for H3: collision for block 4: x4,  x’4  
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Multi-collisions [Joux ’04] 

•  finding multi-collisions for an iterated hash function is not 
much harder than finding a single collision (if the size of the 
internal memory is n bits) 

h2 h1 

g(x) = h1(x) || h2(x) 

R • algorithm 
•  generate R =  2n1/2-fold 

multi-collision for h2 
•  in R: search by brute 

force for h1 

• Time: n1. 2n2/2 + 2n1/2              
  <<  2(n1 + n2)/2 
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Multi-collisions [Joux ’04] 

consider h1 (n1-bit result) and h2 (n2-bit result), with n1 ≥ n2. 
concatenation of 2 iterated hash functions (g(x)= h1(x) || h2(x)) 

is as most as strong as the strongest of the two (even if both 
are independent) 

• cost of collision attack against g at most  
          n1 .  2n2/2 + 2n1/2  <<  2(n1 + n2)/2   
• cost of (2nd) preimage attack against g at most 
          n1 . 2n2/2 + 2n1 + 2n2  << 2n1 + n2  
•  if either of the functions is weak, the attacks may work better 
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Summary 
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Improving MD iteration 

salt + output transformation + counter + wide pipe 

f 

x1 

IV 
f 

x2 

H1 

f 

x3 

H2 

f 

x4 

H3 g 

1 

salt salt salt salt salt 

|x| 

security reductions well understood 
many more results on property preservation 
impact of theory limited 

2 3 4 

2n 2n 2n 2n 2n n 
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Improving MD iteration 

•  degradation with use: salting (family of functions, 
randomization) 
–  or should a salt be part of the input? 

•  PRO: strong output transformation g  
–  also solves length extension 

•  long message 2nd preimage: preclude fix points 
–   counter f → fi [Biham-Dunkelman’07] 

•  multi-collisions, herding: avoid breakdown at 2n/2 
with larger internal memory: known as wide pipe 
–   e.g., extended MD4, RIPEMD, [Lucks’05] 
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Compression functions 

38 



39 

Block cipher (EK) based 

Davies-Meyer 

xi 

E Hi-1 

Hi 

Miyaguchi-Preneel 

xi E 

Hi-1 

Hi 

•  output length = block length 

•  12 secure compression functions (in ideal cipher model) 

•  requires 1 key schedule per encryption 

•  analysis [Black-Rogaway-Shrimpton’02], [Duo-Li’06], [Stam’09],… 
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Permutation (π) based: sponge 

Examples: Panama, RadioGatun, Grindahl,   
        Keccak (no buffer) 

x1 

π

H10 

H20 

x2 

π

x3 

π

x4 

π π π π

h1 

π

h2 

absorb buffer squeeze 

…
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Permutation (π) based 

small permutation 

JH 
xi 

π 

H1i-1 H1i 

H2i H2i-1 
Hi 

Grøstl 

xi 

π2 
Hi-1 

π1 
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Iteration modes and compression functions 

•  security of simple modes well understood 
•  powerful tools available 

•  analysis of slightly more complex schemes very 
difficult 

•  which properties are meaningful? 
•  which properties are preserved? 
•  MD versus sponge is still open debate 
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SHA-{0,1,2} 

43 
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Hash function history 101 
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2010 
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DES 

AES 

single 
block 
length 

double 
block  
length 

permu-
tations  

RSA 

ad hoc 
schemes 

security 
reduction 
for 
factoring, 
DLOG, 
lattices 

MD2 
MD4 
MD5  

SHA-1 

RIPEMD-160 

SHA-2 
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SNEFRU 

Dedicated 
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Performance of hash functions  [Bernstein-Lange] 
(cycles/byte) AMD Intel Pentium D 2992 MHz (f64) 

MD5 RMD-16
0 

SHA-
256 

Whirl-
pool  

AES- hash 
(esti-
mated) 

2001 
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MDx-type hash function history 

MD5 

SHA 

SHA-1 

SHA-256 
SHA-512 

HAVAL 

Ext. MD4 

RIPEMD 

RIPEMD-160 

MD4 90 

91 

92 

93 

94 
95 

02 
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The complexity of collision attacks 

brute force: 1 million PCs (1 year) or US$ 100,000 hardware (4 days) 
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MD5 [Rivest’91] 
4 rounds of 16 steps 

A0 B0 C0 D0 

A1 B1 C1 D1 

A16 B16 C16 D16 

x0 

x15 

A17 B17 C17 D17 

A32 B32 C32 D32 xp(15) 

xp(0) 

A33 B33 C33 D33 

A48 B48 C48 D48 xq(15) 

xq(0) 

A49 B49 C49 D49 

A64 B64 C64 D64 xr(15) 

xr(0) 

… 

… 

… 

… 
f

f

g

g

h

h

j

j

+

H i-1 

H i 

xi 

Ki 
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SHA-1 

[Wang+’04] 

[Wang+’05] 
[Mendel+’08] 

[McDonald+’09] 

[Manuel+’09] 

Most attacks 
unpublished/withdrawn 

[Sugita+’06] 

log2 complexity 

prediction: collision for SHA-1 in the next 12-18 months  
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NIST and SHA-1 
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Rogue CA attack  
[Sotirov-Stevens-Appelbaum-Lenstra-Molnar-Osvik-de Weger ’08] 

Self-signed  
root key 

CA1 CA2 Rogue CA 

User1 User2 User x 

•  request user cert; by special 
collision this results in a fake CA 
cert (need to predict serial 
number + validity period)  

• 6	  CAs	  have	  issued	  cer8ficates	  signed	  with	  MD5	  in	  2008:	  
—  Rapid	  SSL,	  Free	  SSL	  (free	  trial	  cer8ficates	  offered	  by	  RapidSSL),	  TC	  TrustCenter	  AG,	  RSA	  

Data	  Security,	  Verisign.co.jp	  

	  	  	  impact:	  rogue	  CA	  that	  
can	  issue	  certs	  that	  
are	  trusted	  by	  all	  
browsers	  



52 

Upgrades 

•  RIPEMD-160 is good replacement for SHA-1 

•  upgrading algorithms is always hard 

•  TLS uses MD5 || SHA-1 to protect algorithm 
negotiation (up to v1.1) 

•  upgrading negotiation algorithm is even 
harder: need to upgrade TLS 1.1 to TLS 1.2 
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SHA-2 [NIST‘02] 

• SHA-224, SHA-256, SHA-384, SHA-512 
–  non-linear message expansion 
–  more complex operations 
–  64/80 steps 
–  SHA-384 and SHA-512: 64-bit architectures 

• SHA-256 collisions: 24/64 steps [Sanadhya-Sarkar’08] 

• SHA-256 preimages: 43/64 steps [Aoki+’09] 

•  implementations today faster than anticipated 

• adoption 
–  industry may migrate to SHA-2 by 2011 or may wait for SHA-3  
–  very slow for TLS/IPsec (no pressing need) 
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SHA-3 
(bits and bytes) 

54 
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NIST AHS competition (SHA-3) 

•  SHA-3 must support 224, 256, 384, and 512-bit message 
digests, and must support a maximum message length of at 
least 264 bits 

round 1 
round 2 

final 

Call: 02/11/07 
Deadline (64): 31/10/08 

Round 1 (51):    9/12/08 

Round 2 (14):    24/7/09 

Final (5):            9/12/10          

Standard: 2012 
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The candidates 

Slide credit: Christophe De Cannière 
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Preliminary cryptanalysis 

Slide credit: Christophe De Cannière 
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End of Round 1 candidates 

a 

Slide credit: Christophe De Cannière 
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Round 2 candidates 

a 

Slide credit: Christophe De Cannière 
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Compression function/iteration 

Block cipher Permutation MD/HAIFA 
Blake HAIFA 
Grøstl 2-permutation MD 
JH JH-specific 
Keccak Sponge 
Skein MMO MD*/Tree (UBI) 
BMW PGV variant MD 
Cubehash Sponge-type 
ECHO HAIFA 
Fugue Spong-type 
Hamsi 
Luffa Sponge-type 
Shabal Sponge-type 
Shavite-3 Davies-Meyer HAIFA 
SIMD PGV variant MD 
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Properties: bits and bytes 
[Watanabe’10] 
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Security reductions  
[Andreeva-Mennink-P’10] 
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Security: SHA-3 Zoo 
http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo 
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Software performance  
[Bernstein-Lange10]  http://bench.cr.yp.to/ebash.html 

cycles/byte on 3.2 GHz, AMD Phenom II X6 1090T (100fa0) 

512/256-bit 
hash 

64-bit machine 
so 512-bit 
version is often 
faster 

BMW 
Cubehash 

Fuge 
Groestl 

JH 
Keccak 

Shabal 
Shavite-3 

Skein 
SHA-2 

SHA-2 
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Hardware: post-place & route results for  
ASIC 130nm [Guo-Huang-Nazhandali-Schaumont’10] 
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SHA256	  
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Throughput	  
(Gbps)	  

Slide credit: Patrick Schaumont, Virginia Tech 
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Skein 
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Issues arisen during Round 1 

•  round 1 was very short; several functions received 
no outside analysis 

•  security 
–  some controversy on complexity and relevance of attacks  
–  proofs have not helped much to survive 

• performance 
–  weak performance resulted in elimination 

• 7/14 designs tweaked at the beginning of round 2 
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Issues arisen during Round 2 

•  security 
–  few real attacks but some weaknesses 
–  new design ideas harder to validate 

•  performance: roughly as fast or faster than SHA-2 
–  SHA-2 gets faster every day 
–  widely different results for hardware and software 

•  software: large difference between high end and embedded 
•  hardware: FGPA and ASIC  

–  what about lightweight devices and 128-core machines? 
•  diversity = third selection criterion 

•  expect more tweaks before final 
•  variable number of rounds? 
•  NIST expects that SHA-2 and SHA-3 will co-exist 
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Final 

•  Blake 
•  JH 
•  Grøstl 
•  Keccak 
•  Skein 
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SHA-4? 

• an open competition such as SHA-3 is bound to 
result in new insights between 2008-2012 

• only few of these can be incorporated using 
“tweaks” 

•  the winner selected in 2012 will reflect the state 
of the art in October 2008 

• nevertheless, it is unlikely that we will have a 
SHA-4 competition before 2030 



70 

Hash functions: conclusions 

•  SHA-1 would have needed 128-160 steps 
instead of 80 

•  2004-2009 attacks: cryptographic meltdown but 
not dramatic for most applications 
–  clear warning: upgrade asap 

•  half-life of a hash function is < 1 year 
•  theory is developing for more robust iteration 

modes and extra features; still early for building 
blocks 

•  nirwana: efficient hash functions with security 
reductions 
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The end 

Thank you for 
your attention 
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Brute force collision search 

•  Consider the functional graph of h 
h(x) x h 

collision 

h(x) h2(x) 

x 
h(x) 

h2(x) 
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Brute force collision search 

•  low memory and parallel  
implementation of the birthday attack 
[Pollard’78][Quisquater’89][Wiener-van Oorschot’94] 

•  distinguished point (d bits)  
–  Θ(e2n/2 + e 2d+1) steps with e the cost of one 

function evaluation 
–  Θ(n2n/2-d) memory 
–  full cost: Θ(e n2n/2) [Wiener’02]  

l 

c 

l = c = (π/8) 2n/2  

h(x) x h 
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Functional graph of f(x) = x2 + 
7 mod 11 

•  Exercise: why is the indegree of 5 nodes equal to 0 resp. 2? 

9 2 

7 
4 

1 

8 

5 10 

3 6 

0 
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Tree structure: parallelism 

[Damgård’89], [Pal-Sarkar’03] 

f 

x1 

f 

f f 

x2 x3 x4 x5 

f 

f f 

x6 x7 x8 
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Rebound Attack 

a new variant of differential cryptanalysis 

developed during the design of Grøstl [MRST09] 
already successfully applied to Whirlpool and the SHA-3 
candidates Twister, Lane, and reduced versions of others 

Slide credit: Christian Rechberger 
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MD5 [Rivest’91] 

•  4 rounds (64 steps) 
•  pseudo-collisions [denBoer-Bosselaers’93]  
•  collisions for compression function [Dobbertin’96] 

•  collisions for hash function  
–   [Wang+’04] – 15 minutes 
–   … 
–   [Stevens+’09] – milliseconds 
–   brute force (264): 1M$ 8 hours in 2010 

•  2nd preimage in 2123 [Sasaki-Aoki’09] 
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MD5 

•  advice (RIPE since ‘92, 
RSA since ‘96): stop 
using MD5 

•  largely ignored by 
industry until 2009 
(click on a cert...) 
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SHA(-0) [NIST’93] 

•  now called SHA-0, because of ’94 of publication SHA-1  
•  very similar to MD5: 

–   16 extra steps (from 64 to 80) 
–   message expansion uses bitwise code rather than repetition 

 wj ← (wj−3 ⊕ wj−8 ⊕ wj−14 ⊕ wj−16 )  j>15 
–   quasicyclic code with  dmin = 23 

•  1994: withdrawn by NIST for unidentified flaw 
•  2004: collisions for in 251 [Joux+’04] 
•  2005: collisions in 239 [Wang+’05] 
•  2007: collisions in 232 [Joux+’07] 

• 2008: collisions in 1 hour [Manuel-Peyrin’08] 
• 2008: preimages for 52 of 80 steps in 2156.6 [Aoki-Sasaki’09] 
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•  fix to SHA-0 
•  add rotation to message expansion: quasicyclic code, dmin = 25 

wj ← (wj−3 ⊕ wj−8 ⊕ wj−14 ⊕ wj−16 ) >>> 1   j > 15 

SHA-1 [NIST’95]  

•  53 steps  [Oswald-Rijmen’04 and Biham-Chen’04] 
•  58 steps [Wang+’05] 
•  64 steps in 235 – highly structured [De Cannière-Rechberger’06-’07]:   
•  70 steps in 244 – highly structured [De Cannière-Rechberger’06-’07]:  
•  70 steps 239 (4 days on a PC) [Joux-Peyrin’07] 
•  269 [Wang+’05]  
•  263 ? [Wang+’05 - unpublished] 
•  251 ? [Sugita+’06 ] 
•  262 ? [Mendel+’08 - unpublished] 
•  252 ?? [McDonald+’09 - unpublished] 

co
lli

si
on

s 

preimages for 48/80 steps in 2160-ε [Aoki-Sasaki’09] 
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Impact of collisions 

•  collisions for MD5, SHA-0, SHA-1 
–   2 messages differ in a few bits in 1 to 3 512-bit input blocks 
–   limited control over message bits in these blocks 
–   but arbitrary choice of bits before and after them 

•  what is achievable for MD5? 
–   2 colliding executables/postscript/gif/…[Lucks-Daum’05] 
–   2 colliding RSA public keys – thus with colliding X.509 

certificates [Lenstra+’04] 
–   chosen prefix attack: different IDs, same certificate 

[Stevens+’07] 
–   2 arbitrary colliding files (no constraints) in 8 hours 

for 1 M$ 
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Impact of MD5 collisions 

•  digital signatures: only an issue if for non-
repudiation 

•  none for signatures computed before attacks 
were public (1 August 2004) 

•  none for certificates if public keys are 
generated at random in a controlled 
environment 

•  substantial for signatures after 1 August 
2005 (cf. traffic tickets in Australia) 
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And (2nd) preimages? 

•  security degrades with number of applications 
•  for large messages even with the number of 

blocks (cf. supra) 
•  specific results:  

–   MD2: 273  [Knudsen+09] 
–   MD4: 2102  [Leurent’08] 
–   MD5: 2123 [Sasaki-Aoki’09] 
–   SHA-0: 52 of 80 steps in 2156.6 [Aoki-Sasaki’09] 
–   SHA-1: 48 of 80 steps in 2159.3 [Aoki-Sasaki’09] 
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HMAC 

• HMAC keys through the IV (plaintext)  
–  collisions for MD5 invalidate current security proof of HMAC-MD5 

Rounds in f2 Rounds in f1 Data complexity 

MD4 48 48 272 CP + 277 time 
MD5 64 33 of 64 2126.1 CP 
MD5 64 64 251 CP & 2100 time (RK) 
SHA-0 80 80 2109 CP 
SHA-1 80 53 of 80 298.5 CP 

f2 

f1 

x K1 

K2 
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SWIFFTX   
[Arbitman-Dogon-Lyubashevsky-Micciancio- Peikert-Rosen’08] 

•  compression function: 
–  SWIFFT: FFT-like operation from  (Z2

32)64 to Z257
64    

–  sandwich: 3xSWIFFT -  S-boxes  - 1xSWIFFT 

•  asymptotic proof of security: “it can be formally 
proved that finding a collision in a randomly-
chosen compression function from the SWIFFTX 
family is at least as hard as finding short vectors 
in cyclic/ideal lattices over the ring Z[α]/(α n+1) is 
in the worst case.” 

•  note: SWIFFT mapping is linear and some 
heuristics are needed to “kill” the linearity 

•  speed: 57 cpb 
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FSB [Augot-Finiasz-Gaborit-Manuel-Sendrier’08] 

•  compression function: multiplication of vector of Hamming 
weight w with a truncated quasi-cyclic binary matrix 
–  can be interpreted as a syndrome computation of an error pattern with weight 

w 

•  MD iteration with Whirlpool as output transformation 
•  security can be reduced to:  
(Computational Syndrome Decoding) Given a binary r x n 

matrix H, a word s ∈ {0,1}r and an integer w > 0, find a 
word e ∈ {0,1}n of Hamming weight ≤ w such that eHT = s. 

(Codeword Finding) Given a binary r x n matrix H and an 
integer w > 0, and a non-zero word e ∈ {0,1}n of Hamming 
weight ≤ w with an all zero H-syndrome. 

•  324 cpb (can be optimized) 
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ZesT: a SHA-4 candidate? 

•  Zémor-Tillich: consider the 2 generators of the group SL(2; F2n)  
                      x   1                                    x    x+1 
         A0  =                                  A1 =  
                     1    0                                    1      1 

 the hash value of a string x with elements x[i] is   Πi=1
n  Ax[i] 

•  ZesT = vectorial version of the Zémor-Tillich function iterated 2x 
•  security: ZesT is collision resistant if and only if the balance 

problem is hard and in particular if the representation problem 
is hard for the group SL(2; F2n) and the generators A0 and A1 

•  performance: 10-20 times slower than SHA-512 but parallelism 
More details: PhD thesis of Christophe Petit, UCL, May 2009 

Original ZT scheme broken in 2009 
see IACR eprint [Grassl-Ilic-Magliveras-Steinwandt’09] 


